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ABSTRACT

We examine reforecasts of flash droughts over the United States for the late spring (April–May), mid-

summer (June–July), and late summer/early autumn (August–September) with lead times up to 3 pentads

based on the NOAA second-generation Global Ensemble Forecast System reforecasts version 2 (GEFSv2).

We consider forecasts of both heat wave and precipitation deficit (P deficit) flash droughts, where heat wave

flash droughts are characterized by high temperature and depletion of soil moisture and P deficit flash

droughts are caused by lack of precipitation that leads to (rather than being the cause of) high temperature.

We find that the GEFSv2 reforecasts generally capture the frequency of occurrence (FOC) patterns. The

equitable threat score (ETS) of heat wave flash drought forecasts for late spring in the regions where heat

wave flash droughts are most likely to occur over the north-central and Pacific Northwest regions is statis-

tically significant up to 2 pentads. The GEFSv2 reforecasts capture the basic pattern of the FOC of P-deficit

flash droughts and also are skillful up to lead about 2 pentads. However, the reforecasts overestimate the

P-deficit flash drought FOC over parts of the Southwest in late spring, leading to large false alarm rates. For

autumn, the reforecasts underestimate P-deficit flash drought occurrence over California and Nevada. The

GEFSv2 reforecasts are able to capture the approximately linear relationship between evaporation and soil

moisture, but the lack of skill in precipitation forecasts limits the skill of P-deficit flash drought forecasts.

1. Introduction

Flash droughts have received considerable atten-

tion since the rapidly evolving 2012 central U.S. event

(Hoerling et al. 2014), and subsequent events in 2017

over the northern Great Plains, and 2019 over the

southern states. While much remains to be learned

about flash droughts (Pendergrass et al. 2020), a key

feature is their rapid intensification. The quick onset

and tendency in the United States to occur over the

Great Plains and southern tier of states (Mo and

Lettenmaier 2015, 2016) can cause large agricultural

losses; for example, the 2017 event that lasted from

mid-May to June resulted in an estimated $2.6 billion

in agricultural losses (Jensco et al. 2019). The 2019

flash drought that lasted from 16 July to 12 August also

demonstrated linkages between rapid drying of vegeta-

tion and subsequent wildfires (Di Liberto 2019).

Flash droughts differ from conventional drought which

is characterized by the persistent lack of precipitation P,

accompanied by soil moisture (SM), and/or runoff defi-

cits, usually for 6 months or longer (Svoboda et al. 2002).

Flash droughts have much shorter durations—typically a

few weeks. Furthermore, while conventional droughts

develop slowly, a key feature of flash droughts is their

rapid onset and intensification (Pendergrass et al. 2020).

Mo and Lettenmaier (2015, 2016) studied flash droughts

over the United States, and classified them into two cate-

gories based on their forcings: heat wave flash drought (Mo

and Lettenmaier 2015) and precipitation deficit (P deficit)

flash drought (Mo and Lettenmaier 2016). Heat wave flash

droughts are initialized by high surface air temperatures

Tair that cause evaporation (ET) to increase—especially in

the Pacific Northwest and the north-central United States.

That, in turn, leads to decreased SM (Mo and Lettenmaier

2015). In heat wave flash droughts, temperature Tair is the

major forcing, and SM and ET respond.

a Retired.
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Precipitation-deficit flash droughts are caused by the

lack of precipitation, which in turn leads to a decrease of

SM. In areas where SM and ET have a near-linear re-

lationship, ET decreases as a response to decreased SM

(Koster et al. 2009). Sensible heat increases to balance

the decreases of ET. That in turn leads to high Tair. This

type of flash drought is most prominent in the southern

United States and the Great Plains (Mo and Lettenmaier

2016). In P-deficit flash droughts, dry conditions are the

driving force and high Tair is a response. Recently, Wang

andYuan (2018) used definitions of flash droughts similar

to those in Mo and Lettenmaier (2015, 2016) to study

flash droughts over China and their connections with

conventional drought.

A number of alternative definitions of flash drought

have been developed. Ford and Labosier (2017) defined

flash drought as a decrease in soil moisture from 40% to

below 20%, which is the threshold for category D2

drought according to the U.S. Drought Monitor (USDM;

Svoboda et al. 2002) over a period of 20 days. Later,

Koster et al. (2019) adopted a similar definition of flash

drought. Because rapid onset is a key aspect of flash

drought (Pendergrass et al. 2020), some definitions of

flash drought are based on the rapid rate of intensification

of an index (e.g., Otkin et al. 2018) together with a soil

moisture requirement. The index can be satellite derived

ET based on remote sensing. For example: Otkin et al.

(2018) proposed using the rapid change index (RCI;

Otkin et al. 2013; Otkin et al. 2014), which encapsulates

the magnitudes of moisture stress changes over a few

weeks when soil moisture percentiles are less than 20%.

Chen et al. (2019) studied flash drought events based on

the USDM and related flash drought occurrence to cold

ENSO events.

Definitions of flash drought may differ, but many in-

clude abnormally highTair that can be either a forcing or

response and is associated with abnormally high ET

and a decrease of SM. Furthermore, as indicated by

Pendergrass et al. (2020) a key aspect of flash drought is

its rapid intensification, While the quick onset can cause

large agricultural losses as noted above, on the other

hand, the rapid evolution by most definitions, on the

order of a week or two, suggests that there may be the

potential to predict flash droughts, which could help to

mitigate, at least partially, their consequences.

Pendergrass et al. (2020) documented the physical

processes that produce flash drought. Flash drought of-

ten involves P deficits and high Tair which start before or

coincide with a rapid soil moisture decline in sub-

seasonal time scales. This suggests thatTair andP are the

main forcings of flash drought, and accurate forecasts of

these two variables will be the key to forecast flash

droughts. ET plays an important role because it serves

as a bridge which provides feedbacks between land and

atmosphere, and also controls the rate of change of SM.

Notwithstanding a rapidly evolving body of research

on the topic, there is no commonly accepted definition of

flash droughts. Pendergrass et al. (2020) proposed, for

the United States, a definition based on change in the

USDMcategories, while Liu et al. (2020) argued that the

rate of SM change is preferable to our heat wave and

P-deficit definitions. Because the USDM is not objec-

tive, it is not clear how the Pendergrass et al. (2020)

definition can be implemented in forecasts, although it

could perhaps be linked to model-derived quantities

such as soil moisture, given previous work by Chen et al.

(2019) that linked USDM drought categories to soil

moisture percentiles. The definitions suggested by Liu

et al. (2020) and Pendergrass et al. (2020) could be

readily adapted to the strategy we outline below and

apply specifically to a set of medium-range weather re-

forecasts. In any event, given the lack of consensus

surrounding flash drought definitions, we study flash

drought predictability here in the context of heat wave

andP-deficit flash droughts followingMo andLettenmaier

(2015, 2016).

2. Flash drought forecasts

As indicated by Pendergrass et al. (2020), prediction

of flash drought is a challenge because of their rapid

onset, and the fact that most land–atmosphere coupled

models do not predict land atmosphere interactions

well. An alternative is to use statistical methods; for

instance, Otkin et al. (2015) predicted flash drought in-

tensification probabilities derived from their RCI. Here,

we prefer to link our forecasts to an operational medium

range weather forecast model, linked with an offline

macroscale hydrologic model to produce the combina-

tion of physical (P and Tair) and hydrologic (primarily

SM and ET) variables needed to produce forecasts of

both heat wave and P-deficit flash droughts. We then

compare the (ensemble) forecasts with equivalent quan-

tities reproduced by observations (analysis) by driving the

same hydrologic model by observed P and Tair. While our

skill evaluation depends on the definition of flash droughts,

our strategy is readily adaptable to other definitions so long

as the requisite quantities are reproduced by either the

weather forecast model and/or the hydrology model. In

particular, we use the Variable Infiltration Capacity (VIC)

land hydrology model (Liang et al. 1994), although any

similar land surface model could be used.

The forecast skill of medium range weather forecasts

(typically defined as having lead times about 2 weeks or

less) has improved in recent years (Hughes 1992; Novak

et al. 2014). For example, the U.S. Weather Prediction
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Center (https://www.wpc.ncep.noaa.gov/html/scorcomp.

shtml) showed the mean average error for day 7 mini-

mum (maximum) temperature improved from 3.18C
(3.08C) in 1998 to 2.48C (2.88C) in 2019.While P forecast

skill is lower than temperature, Novak et al. (2014)

showed that short lead (up to about 3 days) P forecast

skill improved substantially over the period 1960–2012.

On the other hand,Hamill et al. (2004, p. 1434) state that

‘‘skill has not improved much despite the investment in

large new computers and despite the millions of person

hours invested in model development.’’ Our own expe-

rience is that the skill of P forecasts at monthly lead

times generally is poor (Mo and Lettenmaier 2014).

Most of the skill in forecasts of SM and other related

land surface hydrologic variables, such as runoff, comes

from SM or runoff initial conditions. Shukla et al. (2012)

found that replacing ensemble streamflow prediction

(ESP)-based forecasts of SM and runoff, which are es-

sentially model output forced with resampled climatol-

ogy, with forecasts of P and Tair from NOAA’s Medium

Range Weather Forecast (MRF) model for the first

15 days improved forecast skill for SM and runoff for

1-month leads. This implies that forecasts of both Tair

and P have some useful skill and may be a good candi-

date for flash drought prediction at the scale of a few

pentads (5-day means), notwithstanding that most of the

P forecast skill likely is in the first pentad. We note that

our use of pentads here follows our previous work (Mo

and Lettenmaier 2015, 2016) and is consistent with the

scale of evolution of flash droughts—typically well less

than 1 month.

Skillful forecasting of Tair and P does not necessarily

imply high forecast skill of flash droughts. For both heat

wave and P-deficit flash droughts, the land surface

model (VIC in our case) needs to be able to capture the

physical mechanisms associated with flash droughts, and

in particular the linkages between (observed) P and Tair

and model-derived SM and ET. For heat wave flash

droughts, the linkage between high temperatures and

ET and in turn the relationship of ET with SM needs to

be captured. For P-deficit flash drought, the model

representation of the relationship between SMandET is

especially important.

The MRF model (which we use in a reforecast mode

to provide P and Tair forcings to VIC) has evolved in

recent years to become the current (operational) Global

Ensemble Forecast System (GEFS) for NOAA. We are

interested in NOAA/NCEP forecasts both because of

the potential to implement operationally flash drought

forecast guidance, and because real-time forecasts are

freely available. As with all operational models, a chal-

lenge is that the GEFS model changes with time both as

model parameterizations improve and computing power

increases to support finer spatial resolutions. Here, we

required a stable forecast model so that our evaluation

of forecast skill would not be time varying. Fortunately,

ESRL/PSD has produced second-generation MRF re-

forecasts (Reforecast v2) (Hamill et al. 2013) using the

2012 version of GEFS. The dataset consists of an

11-member ensemble of forecasts, produced every day

from 0000 UTC initial conditions. The reforecast period

is December 1984 to present. We refer hereafter to the

v2 reforecasts as GEFSv2. Given the above context, our

objectives here are 1) to investigate whether GEFSv2 is

able to capture the frequency of occurrence (FOC) and

magnitude of either or both heat wave andP-deficit flash

droughts, 2) to assess the forecast skill of flash drought

events, and 3) to diagnose errors in reforecasts of flash

droughts. These are important steps that could ulti-

mately support development of a real-time forecast

system for flash droughts.

In the remainder of the paper, we summarize the

datasets and procedures used in section 3. In section 4,

we assess the FOC of flash droughts in GEFSv2 refor-

ecasts. In section 5, we evaluate flash drought forecast

skill and diagnostics. We discuss some key aspects of our

conclusions and sensitivities in section 6 and provide

conclusions in section 7.

3. Datasets and procedures

Global forecasts from short- and medium-range

weather forecasts (e.g., with lead times less than about

2 weeks) of daily Tair and P usually have spatial reso-

lutions that are too coarse for hydroclimatic studies.

Furthermore, the forecasts often have large systematic

local biases. ET and SM usually are not archived by such

operational models. To forecast flash droughts, we first

need to correct systematic biases in Tair and P forecasts

and then downscale them to a finer spatial resolution

so a land surface model such as the VIC model (Liang

et al. 1994) can be used to derive ET and SM. A bias

correction and spatial downscaling procedure for doing

so is outlined by Wood and Lettenmaier (2006). We

follow that procedure here.

a. Analysis

For analysis, Tair and P are forcing terms. For SM and

ET, there are only sparse observations over the United

States and virtually none with record lengths more than

about 20 years, which is too short to derive reliable

records directly. Therefore, we use a land surface model

to obtain SM andET. These quantities therefore depend

on the model used. Model uncertainties with respect to

the analysis fields we used were documented by Mo

et al. (2012).
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As noted above, the land surface model we used is the

VICmodel version 4.0.6 (Liang et al. 1994).We used the

same model for both analysis and forecasts for consis-

tency. The model setup is documented in Maurer et al.

(2002). In the setup we used, the VIC model has three

soil layers. The first layer has a depth of 0.1m. The

second layer has depth ranging from 0.2 to 2.4m, and the

third layer has depth varying between 0.1 and 2.5m.

The VIC model was driven by forcings derived from

Tair and P, and other variables such as downward solar

and longwave radiation, humidity, andwind usingmethods

described by Bohn et al. (2013). We used retrospective

forcings from the near-real-time University of California,

Los Angeles (UCLA) surface water monitor, which were

derived from roughly 2400 index stations across the

conterminous United States (CONUS) using procedures

outlined in Wood and Lettenmaier (2006). The 10-m

wind speed was taken from the ClimateDataAssimilation

System (CDAS; Kalnay et al. 1996). We ran the VIC

model in a water balance mode. That means the surface

temperature is taken to be equal to the surface air tem-

perature for purposes of surface energy balance closure.

The spatial resolution of the model was 0.58 latitude–

longitude. Our analysis run was from 1 January 1915

through 31 December 2013. The long run avoided spinup

issues; as described below, our forecast evaluation was for

the more recent period 1985–2012, for which the GEFSv2

outputs fromHamill et al. (2013) are available.We labeled

this run as analysis, which was also used for verification.

We archived pentad means of four variables: P, Tair,

ET, and SM from the analysis run for the base period

1985–2012. We computed pentad standardized temper-

ature, ET anomaly, and P and SM percentiles for the

base period. We used these four variables to identify

heat wave and P-deficit flash drought events.

b. GEFSv2 reforecasts

As noted above, the reforecast dataset is from Hamill

et al. (2013), which is archived at Climate Prediction

Center (CPC). The archived dataset has 18 latitude–

longitude spatial resolution. For each initial date, there

are a total of 11 ensemble members with one control run

and a 10-member perturbation run each day. Each run

lasts for 16 days, but we only used the first 15 days so as

to form 3 pentads. We used the reforecast data for the

period from 1985 to 2012, which provided an adequate

basis for statistical analysis. For each run, the reforecast

archive has P, Tmax, and Tmin forecasts daily over the

CONUS domain at the 18 spatial resolution. We calcu-

lated Tair as the average of Tmax and Tmin.

For a given initial starting date and each lead, we

formed the ensemble mean as the equally weighted av-

erage of the 11 ensemble members. To interpolate

forecast variables to the VIC grid, we adopted the same

approach outlined in Shukla et al. (2012), specifically we

interpolated the reforecasts to 0.58 using the inverse

squared distance interpolation scheme (Shepard 1984).

We then bias corrected Tmax, Tmin, and P using a 45-day

training period prior to the initial starting date (Alpert

and Saha 1989).

The bias correction procedure was as follows: The

corrections were determined from the ensemble mean

of the 11 ensemble members. We determined the pa-

rameters for correction based on the differences be-

tween forecasts and analysis in the training period T,

where T 5 45 days. For a given initial target date Dy

and a given lead L, we took the mean of reforecasts

started from (Dy 2 L 2 1) to (Dy 2 L 2 1 2 T). For

example, if the initial date is 30 May 2000, then for

lead 1 and T 5 45, the training period is from 14 April

to 28 May 2000. We also took the mean of the corre-

sponding analysis from VIC for the same period and

corrected the forecast mean with the analysis mean. We

tested 20-, 30-, and 50-day training periods and found

that results are not sensitive to the length of the training

period as long as it is longer than about 30 days. The

corrected values were equally distributed to each en-

semble member.

To obtain ET and SM, we used the same imple-

mentation of VIC as in the analysis. To force VIC, we

need wind speed in addition to the error-corrected Tmin,

Tmax, and P. We used the climatological wind speed at

10m obtained from the CDAS (Kalnay et al. 1996) for

all members (note that, ideally, we would have used

wind speed from the reforecasts, but this was not an

archived variable). Other land surface model forcings

(e.g., downward solar and longwave radiation and hu-

midity) were not archived in the reforecast dataset, so

instead we computed them using algorithms summa-

rized by Bohn et al. (2013). In general, these algorithms

index downward solar radiation to the daily temperature

range, downward longwave radiation to the daily mean

temperature, and the dewpoint hence vapor pressure

deficit to the daily minimum temperature with a cor-

rection for arid areas. Application of these procedures

resulted in all the forcings at a daily time step needed to

drive the VIC model.

For each year, there are a total of 36 cases with initial

conditions one pentad (5 days) apart from 1 April to

28 September, e.g., the initial date from1April, 6April, . . . ,

to 28 September (5-day spacing) and each case has 11

ensemble forecasts of duration 16 days each, which is the

duration of the GEFSv2 reforecasts. For each case and

each ensemble member, the bias-corrected P, Tmin,

Tmax, and climatological 10-m wind speed were used to

derive forcings which were used to drive the VIC model
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to obtain daily ET and SM for each forecast period of

length 16 days. Note that Livneh et al. (2015) showed

that VIC is relatively insensitive to use of climatological

versus time-varying wind speed. For each initial condi-

tion, each ensemble member, we had four forecasted

variables (P, Tair, P, ET, and SM) to define flash

droughts. From the daily forecast values (neglecting the

last or sixteenth day), we computed 5-day (pentad)

means (3 pentads for each forecast). We therefore had

ensemble pentadmeans ofP,Tair, ET, and SM from lead

1–3 pentads for each case.

To compute ET anomalies, standardized Tair anoma-

lies, and SM and P percentiles, we performed cross

validations. Using the 1 April forecasts as an example,

for each lead pentad and each variable, we had 28 years

of ensemble mean reforecasts starting from 1 April 1985

through 1 April 2012. To form anomalies and percen-

tiles, we removed 1 year (Tg) from the 28 years and as-

signed it as the target year, with the training period as

the remaining 27 years. For a given variable (P, Tair, ET,

or SM), the climatology of each variable was determined

from data in the training period and an anomaly is de-

fined as the departure from that climatology. Similarly,

we computed percentiles of a given variable for the

target year using data in the training period to determine

the profiles and distribution functions. In this way, we

obtained ET anomalies, standardized Tair anomalies and

P and SM percentiles for each pentad. We then selected

flash drought events from the record, which were identi-

fied based on the same criteria as was used in the analysis.

c. Flash drought events

High temperature is major driver for heat wave flash

drought, which requires that the Tair anomaly exceeds

one standard deviation. In Mo and Lettenmaier (2015)

we tested many different criteria for SM and P. In par-

ticular, we tested the criterion that the lack of P is a

condition for flash drought concurrent with extreme

temperature (Tair . 1 standard deviation, ET . 0, and

P anomaly, 0 with no SM requirement). In those tests,

we found that the FOC patterns remain the same, but

magnitudes of FOC change depending on the specific

thresholds. Based on those results, we require the ET

anomaly to be positive and SM below 40% in addition

to Tair . 1 standard deviation for heat wave flash

drought events.

For P-deficit flash droughts, we tested four different

criteria with different thresholds inMo and Lettenmaier

(2016). We tested case 1: P , 40%, ET , 0 with no Tair

requirement. The other three cases tested have the basic

requirements of ET and Tair anomalies: ET anomaly ,
0; Tair. one standard deviation. The differences are the

criteria associated with P and SM anomalies. We tested

case 2: P , 40%; case 3: SM , 40%, and case 4: P ,
20%. The results showed similar FOC patterns but that

the magnitudes change with the criteria. We decided

here to use case 2: P below 40%, Tair anomaly ex-

ceeding one standard deviation and ET anomaly being

negative without specific requirement for SM (Mo and

Lettenmaier 2016). ET change is not a requirement but

the composites of ET anomalies from22 pentads from

onset to onset to 2 pentads after onset indicate inten-

sification of ET from lag 1 pentad to onset (Mo and

Lettenmaier 2016).

d. Forecast verification

Weverifiedwhether the forecasts were able to capture

the pattern and magnitudes of the FOC of both types

flash droughts by comparing the FOCs between analysis

and forecasts. The FOC is defined as the total number of

flash drought events over the data period divided by the

length of data period.

We then examined whether the forecasts were able

to capture individual flash drought events. We use a

contingency table approach because the forecasts are

dichotomous: flash drought, or no flash drought. This

approach was recommended by the World Weather

Research Programme (WWRP)/Working Group on

Numerical Experimentation (WGNE) joint working

group (https://www.wmo.int/pages/summary/progs_

struct_en.html).

There are four possibilities: hit, miss, false alarm and

correct negative. At a given lead and initial conditions,

we considered a hit to have occurred when both analysis

and forecast indicate a flash drought. It is a miss if the

analysis indicates drought, but the forecast does not. It

is a false alarm if the forecast indicates a flash drought,

but the analysis does not. It is a correct negative (CN) if

no flash drought occurs in both analysis and forecasts.

CN is above 90% for the heat wave flash droughts and

above 80% for the P deficit flash droughts over the areas

that FOC. 1%. From the contingency table, we derived

the equitable threat score (ETS), which we used to as-

sess the forecast skill:

ETS5
hits2 hits (random)

hits1misses1false alarms2hits(random)
, and

(1)

hits (random)5
(hits1misses)3 (hits1 false alarm)

total number of cases
.

The ETS score is adjusted for hits associated with ran-

dom chances. It has a range from 21/3 to 1. Below zero

indicates no skill while a perfect score is 1.0. To examine

whether theGEFSv2 reforecasts tend to overestimate or
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underestimate the observed flash drought events, we

computed biases. The bias is defined as

bias5
hits1 false alarms

hits1misses
. (2)

A perfect score is 1.0. The bias ranges from 0 to infinity.

If the bias is greater than 1.0, then the forecast overes-

timates flash drought events. If the bias is less than 1.0,

then the forecast underestimates flash drought events.

We performed the evaluation for late spring, midsum-

mer and late summer/autumn by pooling cases with

initial dates in late spring (April–May), midsummer

(June–July) and late summer/early autumn (August–

September). There are total of 13 cases per year for late

spring, 12 cases for midsummer, and 13 cases for late

summer/early autumn each year.

4. FOC of flash drought events

From the analysis, we computed FOC for heat wave

and P-deficit flash droughts. In Fig. 1, we show the FOC

for April–May, June–July, and August–September for

the base period 1985–2012. For late spring when heat

wave flash droughts are mostly likely to occur, the FOC

(Fig. 1a) indicates maxima located in the north-central

and central-eastern United States with another band of

maxima extending from northern California to the

Pacific Northwest. These results are consistent with Mo

and Lettenmaier (2015) who performed the same anal-

ysis except for the longer period from 1916 to 2013. The

FOCs for heat wave flash droughts have large seasonal

variations; specifically, the number of events decreases

through the warm season. In midsummer, most events

occur in the Midwest and the Pacific Northwest, but the

FIG. 1. Frequency of occurrence of the heat wave flash drought in (a) spring (April–May), (b) summer (June–July), and (c) fall (August–

September) from the analysis. Contours are given by the color bar. (d)–(f) As in (a)–(c), but for P-deficit flash droughts.
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member of events is much lower than the number in late

spring (Fig. 1b). There are only few scattered events in

late summer and early autumn (Fig. 1c).

The FOCs for P-deficit flash drought (Figs. 1d–f) from

analysis show a band of maxima over the southern

United States and another band of maxima along the

path from Texas to the northern Great Plains, but the

locations and magnitudes of maxima vary with seasons.

In late spring, there are very few events over the north-

central United States. More events are located west of

about 908W with a band of maxima near the southwest

U.S. border with Mexico. There are more P-deficit flash

droughts in summer. The FOCs are highest across the

southern United States, with some values exceeding

8%–10%. FOCs are slightly lower (6%–8%) along a

path from the southern Great Plains northward to the

Dakotas. In late summer and early autumn, the magni-

tudes of the FOCs decrease for the southern United

States but increase in the inland PacificNorthwest and in

California.

Desert areas [e.g., the Southwest (258–358N, 1108–
1238W)] are not the focus of our study, and caution

should be exercised in any event in interpreting results

over areas with very low precipitation. This is so because

the climatology of these areas is exceptionally dry, and

relatively small anomalies can be reflected in apparent

and spurious flash droughts. Furthermore, these areas

are often due to observations errors—they are usually

areas with sparse population, meaning few precipitation

gauges, and the gridding algorithms used to produce the

precipitation dataset is prone to anomalies due to av-

eraging in stations that are some distance away and may

have different seasonal precipitation patterns than the

central desert areas. For instance, consider the town of

Mojave, California, versus Lebec some 80km to the

west, which gets much more (and more frequent) pre-

cipitation. Both stations are likely to be included in the

weighted average for at least part of the Mojave Desert,

where Fig. 3 shows apparently anomalous tendency for

flash droughts in the spring.

TheFOCs for heatwave flash drought from theGEFSv2

reforecasts (Fig. 2) from lead 1 pentad (day 1–5) to lead

3 pentads (day 10–15) capture the seasonal variations of

the FOCs. The forecasts for late spring indicate that heat

wave flash droughts occur over the north-central United

States and over the West from Northern California to the

PacificNorthwest. The patterns of the FOCs are consistent

with analysis but magnitudes are weaker (Figs. 2a–c). For

midsummer, the events are located over the northern part

of the country and the Pacific Northwest. There are few

scattered events in late summer and autumn. Overall, the

model is able to capture the patterns of the FOCs and the

seasonal variations well.

The FOCs for P-deficit flash drought from the

GEFSv2 reforecasts (Fig. 3) capture the overall pat-

terns of the FOC, but the locations and magnitudes of

the maxima differ from the analysis. For late spring,

the FOCs (Figs. 3a–c) capture the minima over the

north-central region but the forecasts overestimate

the FOCs in the interior of the West (e.g., Nevada,

Utah, and Idaho). In midsummer, the forecasts cap-

ture the band of maxima over the southern United

States and another band of maxima extending from

Texas to the northern Great Plains, but the model

underestimates the FOCs in California and Arizona.

In late summer and early autumn, the model under-

estimates FOCs over California and Nevada.

5. Forecast skill

We used the ETS score to evaluate forecast skill. The

skill scores should be considered together with the FOC.

In areas where the FOC is small, a few incorrectly

forecasted events can lead to large ETS errors (e.g., the

Mojave Desert example above), even though they have

little practical impact. Therefore, we only performed our

forecast evaluations for areas with FOCs (in our analy-

sis) above 1%.

a. Heat wave flash droughts

Figure 4 shows the ETS scores for heat wave flash

droughts. The ETS scores are from 0.2 to 0.5 for late

spring for lead 1 pentad and decrease at lead times

2 and 3 pentads, but even at lead 3 pentads, ETS scores

are mostly positive. The skill is not as high in sum-

mer as in late spring but ETS is nonetheless posi-

tive and between 0 and 0.3 over the northern United

States where FOC from analysis is greater than 1%.

At lead 3 pentads, ETS is negative over parts of

the north-central United States. There were too few

events to allow a meaningful evaluation for late summer

and autumn.

We examined in more detail the skill for late spring

where heat wave flash droughts occur most frequently

(Fig. 5). Even in late spring, CN is greater than 90%

because heat wave flash droughts do not occur often

in either forecasts or in analysis. Biases are between

0 and 1 so overall the model does not have a tendency

to overestimate or underestimate heat wave flash

drought events. At lead one pentad, the hit rate is

greater than 0.4 over the high FOC areas, but hit rates

decrease and false alarm rates increase as the lead

increases. After lead 1 pentad, there are more misses

than hits. At lead 3 pentads, the hit rate is between 0.1

and 0.2 with the false alarm rate greater than 0.7.

Large misses and large false alarm rates indicate that
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flash drought may be forecasted, but they do not occur

at the same time as in the analysis.

Heat wave flash droughts are driven by Tair, hence

forecast skill is influenced by the ability of the GEFSv2

to forecast high temperature anomalies greater than one

standard deviation from climatology. Figure 6 shows the

ETS score for such temperatures by season. For lead

1 pentad, skill is 0.2 or above for all seasons. Skill is

also higher in midsummer with ETS . 0.4 and late

summer/autumn with ETS . 0.3. Skill is lower in late

spring because Tair in spring has larger variability

(higher standard deviations). Therefore, it is difficult

to forecast. Skill decreases rapidly fast as the lead

increases. For April–May where the heat wave flash

droughts are most likely to occur, skill is above 0.2

for small areas near Wisconsin and Minnesota and

Northern California at lead 2 pentads. For other areas,

the skill is above 0. At lead 3 pentads, the highest score is

only 0.1 over the northern United States except the

Pacific Northwest. For June–July, the skill for lead

2 pentads is above 0.2–0.3 except for the western interior

region and the Southwest where temperature is influ-

enced by monsoon rainfall. At lead 3 pentads, skill is

above 0.2 over Texas. There is not a sufficient number of

flash drought events in late summer/autumn tomake any

differences. Overall, the temperature forecasts are only

FIG. 2. GEFSv2 forecast-based estimates of the FOC for heat wave flash droughts for initial conditions in spring (April–May) at lead

(a) 1 pentad, (b) 2 pentads, and (c) 3 pentads. Contours are given by the color bar. (d)–(f) As in (a)–(c), but for initial conditions in summer

(June–July); (g)–(i) as in (a)–(c), but for initial conditions in fall (August–September).
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skillful at lead 1–2 pentads and that influences the skill

of heat wave flash drought forecasts.

b. P-deficit flash droughts

In contrast to heat wave flash droughts, P-deficit flash

droughts are more uniformly distributed across seasons.

The forecasts are generally skillful at lead 1 pentad

(Figs. 7a,d,g). In the southernUnited States and the path

from Texas to the northern Plains where the FOC has a

band of maxima, ETS values are between 0.2 and 0.4 at

lead 1 pentad. The skill decreases quickly as lead in-

creases. At lead 2 pentads, in the large FOC areas the

ETS is between 0.1 and 0.2 for Texas and the southern

states but only between 0 and 0.1 along the path from

Texas to the northern Great Plains. For summer and

autumn, the skill over the western region including

California and Nevada is low where the GEFSv2 re-

forecasts also underestimate the FOC. At lead 3 pen-

tads, ETS is mostly just above zero except Texas where

ETS is higher and is between 0.1 and 0.2. Over the

West, ETS is negative for both midsummer and late

summer/autumn but is above zero in late spring.

At lead 1 pentad, the CN rate is above 0.8 (Fig. 8) for

areas with FOC . 0.1 which is smaller than the CN for

heat wave flash droughts because the FOC for P-deficit

flash droughts is generally higher than for heat wave

flash droughts. For all seasons, the forecasts have higher

hit rates over the southern United States and low biases

and low false alarms. However, the GEFSv2 forecasts

show more events over the interior of the West (west of

908W) than in the analysis in spring and summer.Most of

the excess events in the forecasts are false alarms, and

FIG. 3. As in Fig. 2, but for the P-deficit flash droughts.
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that causes biases larger than 1. For summer, in addition

to the large false alarm rates over the West, biases

greater than 1 also occur over the north-central region

where there should be fewer P-deficit flash droughts as

indicated by analysis (Figs. 1d–f). Figure 9 shows the

ETS skill for P. The skill of P forecasts is overall much

lower than temperature (Fig. 6). The ETS for P , 40%

which is one of the conditions to define the P-deficit

drought is between 0.2 and 0.4 only for lead 1 pentad.

After that, ETS drops to 0.1 even though they are pos-

itive at lead 2 pentads. At lead 3 pentads, ETS is below

0.1 or even negative.

Comparison of the forecast skill indicates that the

ETS skill for the P deficit drought events is higher than

the ETS skill for P forecasts. Therefore, there is another

source of skill. As indicated by Mo and Lettenmaier

(2016), two conditions have to be satisfied for the

P-deficit flash droughts to occur: 1) lack of P and 2) high

correlation between ET and SM. P deficit can drive

down the SM, but the SManomalies aremore persistent.

If the SM deficit causes ET to decrease, over these areas,

the sensible heat will increase to balance the decrease of

ET (latent heat) and that will cause the temperature

anomaly to increase. If Tair anomaly increases above

FIG. 4. ETS score for the GEFSv2-based forecasts of heat wave flash drought at lead (a) 1 pentad, (b) 2 pentads, and (c) 3 pentads for

initial conditions in April–May contours are given by the color bar. (d)–(f) As in (a)–(c), but for initial conditions in summer (June–July);

(g)–(i) as in (a)–(c), but for initial conditions in fall (August–September).
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FIG. 5. (a) Hit rate, (b) bias, (c) false alarm rate, and (d) correct negative (CN) term for GEFSv2-based forecasts of heat wave flash

droughts at lead 1 pentad for initial conditions in spring (April–May). Contours are given by the color bar. (e)–(h) As in (a)–(d), but for

lead 2 pentads; (i)–(l) as in (a)–(d), but for lead 3 pentads.
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1 standard deviation, a P deficit flash drought can

be detected. From Koster et al. (2009) and Mo and

Lettenmaier (2016), the areas where SM and ET have a

near-linear relationship are over the southern United

States and a swath from Texas to the northern Great

Plains. These are also areas that the ETS for P-deficit

flash droughts have high skill (Fig. 7). Figure 10 shows

the correlation between SM and ET from the GEFSv2

reforecasts. The correlation needs to be more than 0.14

to be statistically significant at the 95% level. The cor-

relations are statistically significant over the southern

states and the significant correlations also extend from

Texas to the northern Great Plains in spring and at lead

1 pentad for summer and autumn. If P anomalies at the

initial time are negative, they may lead to negative SM

anomalies. The GEFSv2 physics is able to capture the

SM and ET relationship. This may explain why the

P-deficit flash drought forecasts have higher skill than

the P forecasts.

6. Discussion

As we note above, a number of alternative definitions

of flash droughts have been proposed over the last few

years. At this time, there is no accepted definition. Most

alterative definitions are based on changes in ET or

variables related to ET, and in some cases an additional

SM percentile requirement (e.g., Otkin et al. 2018). We

view ET changes as forced, and the forcings are in

general associated with temperature and/or precipitation.

FIG. 6. ETS for the GEFSv2 forecasts of temperature above 1 standard deviation for initial conditions in spring (April–May) at lead

(a) 1 pentad, (b) 2 pentads, and (c) 3 pentads. Contours are given by the color bar. (d)–(f) As in (a)–(c), but for initial conditions in summer

(June–July); (g)–(i) as in (a)–(c), but for initial conditions in fall (August–September).
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In any event, the composites of ET before and during

flash drought events selected based on Tair and P show

that there is a rapid change in ET for both heat wave and

P deficit flash droughts (Mo andLettenmaier 2016).More

importantly though, from the standpoint of flash drought

forecast skill is that our results indicate the skill of the

GEFSv2 forecast for flash droughts is limited to one or

two pentads. On average, and over most of our domain,

the forcing Tair overall is skillful for about 2 pentads and

P is only skillful for one pentad. Because ET and SM are

forced by Tair and P, it stands to reason that if an alter-

native definition of flash drought requires duration of

drought longer than about 2 pentads (e.g., Ford and

Labosier 2017; Christian et al. 2019; Otkin et al. 2018),

then flash droughts based on those definitions are not

likely to be predictable by the GEFSv2. The approach we

use could of course be applied to other flash drought in-

dices, so long as they are based on physical variables that

are predicted by the GEFS (or other medium range

weather forecast models). The suggestion of Pendergrass

et al. (2020) that rapid evolution is a key element and

application of that principle by Liu et al. (2020) using SM

as the target variable does suggest that there is potential

for flash drought forecast skill so long as the period of

evolution is a small number of pentads. Our definitions

are consistent with the basic concept that flash droughts

are rapidly evolving events which are distinguished

from longer more slowly evolving ‘‘classical’’ droughts.

FIG. 7. As in Fig. 4, but for the P-deficit flash droughts.
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FIG. 8. (a)Hit rate, (b) bias, (c) false alarm rate, and (d) correct negative (CN) term for theGEFSv2-based forecasts of theP-deficit flash

droughts at lead 1 pentad for initial conditions in spring (April–May). Contours are given by the color bar. (e)–(h) As in (a)–(d), but for

initial conditions in summer (June–July); (i)–(l) as in (a)–(d), but for initial conditions in autumn (August–September).
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Nonetheless examination of the implications of al-

ternative definitions of flash droughts on their pre-

dictability is, we believe, a topic that merits further

investigation.

7. Conclusions

Our objective was to assess the skill of the MRF in

forecasting flash droughts. We examined GEFSv2-

based reforecasts of flash droughts over the CONUS

for the spring, summer, and autumn. We found the

following:

1) The GEFSv2 reforecasts generally capture the

spatial and seasonal patterns of flash drought

FOCs, especially for heat wave flash droughts. The

GEFSv2 reforecasts capture the basic pattern of

the FOC of P-deficit flash droughts, aside from

some anomalies in late spring over parts of the

Southwest, which lead to large false alarm rates,

and underestimate of flash drought occurrence

over California and Nevada.

2) ETS scores for late spring for heat wave flash

droughts (the season when they are most likely to

occur) are greater than 0.2 for lead 1 and in some

regions 2 pentads, which suggests usable (if not

strong) forecast skill. At lead 1 pentad in spring, the

hit rate is more than 0.4 and biases are low. As the

lead increases, the hit rate decreases and the false

alarm rate increases. At lead 3 pentads, the ETS is

still mostly positive although skill probably is too

low to perform useful forecasts. For summer, the

reforecasts have ETS scores greater than about 0.1

for lead 1 pentad. At lead 3 pentads, ETS is below

0.1 and is negative in some places so there is no

FIG. 9. As in Fig. 6, but for P.
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useful skill. For P-deficit flash droughts, the GEFSv2

reforecasts generally are less skillful than for heat

wave flash droughts. The reason for poor P deficit

flash drought forecasts is because the GEFSv2 refor-

ecasts of P have lower skill than for temperature.

However, the P-deficit flash drought forecasts are

more skillful than the P forecasts, and the forecasts

are able to capture the relationships between SM and

ET. Even though the P forecasts are not skillful after

lead 1 pentad, the negative SM anomalies are more

persistent leading to some skill in the P-deficit flash

drought forecasts.

3) Overall, while the GFFSv2 reforecasts are (mostly)

able to capture the general patterns of the seasonal

variation of FOCs, the forecast skill for individual

events beyond lead one to two pentads is low –

primarily because there are too many false alarms.

One interesting question that could be the subject of

future research is whether the GEFSv2 reforecasts

are able to forecast the onset of strong and persistent

drought events, such as the 2012 central U.S. drought

(which was triggered by a flash drought). The opera-

tionalGEFS forecast in 2012did not capture the onset of

the drought. After the event was underway, the GEFS

captured the event but the forecastedmagnitudes ofTair

and SM percent were weaker than in the analysis.

Acknowledgments. This work is funded by MAPP/

CPO/NOAAGrant GC-14-189A and NA17OAR4310146

(UCLA ref. 20172011).

FIG. 10. Correlation between SM and ET for initial conditions in spring (April–May) at lead (a) 1 pentad, (b) 2 pentads, and (c) 3

pentads. Contours are given by the color bar. (d)–(f) As in (a)–(c), but for initial conditions in summer (June–July); (g)–(i) as in (a)–(c),

but for initial conditions in fall (August–September).
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